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The Deep Learning Revolution

Deep learning has revolutionized the processing of
unstructured data (text, images, audio, video)
This has in turn transformed a variety of disciplines,
ranging from allowing NASA to land a rover on rugged
Martian terrain to changing how doctors diagnose disease
Deep learning can similarly be used to transform
economic analyses
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Unstructured Data in Economics

Massive quantities of non-computable data could power
economic analyses if converted into a computable format:

Text contains massive amounts of unstructured information
Data can be trapped in images; also audio and video
Libraries and archives have scanned billions of pages of
historical documents
While the raw information is very different, DL methods to
convert them into computable information are quite
related, often drawing on the same neural net architecture
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Deep Learning

Deep neural networks map typically unstructured data -
such as text, document image scans, satellite and other
imagery, videos, and audio - to a continuous vector space.
In other words, they map complex and diverse types of
data into a format that is easier to process and understand
At its core, deep learning is an approach for learning
representations of data from empirical examples (LeCun,
Bengio and Hinton, 2015).
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Why Deep Learning

Why would one use a neural network to transform the raw data
into these vector representations, versus just working directly
with raw texts or images?

Transfer learning: Deep neural nets incorporate relevant
information in their parameters from exposure to
massive-scale data
Context: Raw pixels or words lack context. Deep neural
networks provide a powerful method for computing
contextualized representations
Scaleable: Raw texts and images are computationally
unwieldy. In contrast, there are extremely optimized tools
for continuous vector computations



Deep Learning for
Economists

Melissa Dell

Introduction

Classification

Embedding Models
Classes Unknown Ex Ante

Many Classes

Adding Classes at Inference
Time

Regression

Conclusion

Context
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Computing in Economics

SCW
Minisymposium

Dell

Motivation

U.S. Strategies in
South Vietnam

Empirical Methods
and Results

Bombing

Marines vs. Army

Interpretation

The IBM System 360 Super-Computer

While computing has a long history in economics, the advent of
personal computing in the 1990s revolutionized the discipline.
Today, advances in GPU compute and the availability of cheap
cloud compute again have the potential to transform the types
of data and questions economists can study
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Deep Learning for Prediction

Neural networks excel at imputing low-dimensional
structured data from unstructured texts or images
Conceptually, we can divide problems into:

Imputing a continuous number (regression)
Imputing a pre-specified discrete class (classification)
Imputing relationships in data when the classes are not
specified ex ante
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Deep Learning for Prediction

A neural network encodes unstructured data into
lower-dimensional vectors
The researcher can use these representations to predict
whether the raw data belong to pre-specified class(es) by
adding a classifier layer; regression works analogously
Broadly speaking, generative AI performs classification by
predicting what word (in a pre-specified vocabulary)
comes next
Alternatively, one can work directly with the vector
representations, referred to as embeddings
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Classification Flow Chart



Deep Learning for
Economists

Melissa Dell

Introduction

Classification

Embedding Models
Classes Unknown Ex Ante

Many Classes

Adding Classes at Inference
Time

Regression

Conclusion

Outline

Introduction

Classification

Embedding Models
Classes Unknown Ex Ante
Many Classes
Adding Classes at Inference Time

Regression

Conclusion



Deep Learning for
Economists

Melissa Dell

Introduction

Classification

Embedding Models
Classes Unknown Ex Ante

Many Classes

Adding Classes at Inference
Time

Regression

Conclusion

Classification

In traditional classification, a neural network predicts a
score for each of N classes, and the input is assigned the
class with the highest score
Central to the power of transformer neural networks is the
ability to use the same pre-trained language model as the
backbone for a wide variety of classification tasks
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Classification with Transformers
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Classification

Classifier training is a supervised task, and the model
must see a sufficient number of examples from each class
during training in order to perform well on unlabeled data.
Alternatively, generative AI can be used for classification.
In the JEL article, I compare custom-trained models to
generative AI models for 19 different topic classification
tasks. The bottom line is that customized models tend to
be more accurate, particularly when domain shift is
greater, but generative AI does well off-the-shelf for very
straightforward topics.
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Custom Classifier vs. GPT for Classification

Table: F1 scores for predictions

Topic F1 on test set

GPT Distil RoBERTa

GPT-3.5 GPT-4 Trained† RoBERTa Large

advice 0.72 0.85 0.55 0.87 0.97

antitrust 0.85 0.94 0.84 0.92 0.94

bible 0.52 0.81 0.10 0.85 0.87

civil rights 0.59 0.87 0.54 0.85 0.87

contraception 0.83 0.91 0.72 0.88 0.97

crime 0.85 0.80 0.85 0.85 0.90
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Custom Classifier vs. GPT for Classification

Table: F1 scores for predictions

Topic F1 on test set

GPT Distil RoBERTa

GPT-3.5 GPT-4 Trained† RoBERTa Large

pesticides 0.58 0.91 0.71 0.89 0.98

polio vax 0.92 0.99 0.94 0.96 0.97

politics 0.67* 0.62* 0.74 0.86 0.85

protests 0.74 0.81 0.79 0.90 0.91

Red Scare 0.81 0.86 0.79 0.90 0.91

schedules 0.79 0.95 0.81 0.95 0.96

sports 0.80 0.92 0.88 0.94 0.94
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Custom Classifier vs. GPT for Classification

Table: F1 scores for predictions

Topic F1 on test set

GPT Distil RoBERTa

GPT-3.5 GPT-4 Trained† RoBERTa Large

horoscope 1.00 1.00 0.92 0.96 1.00

labor movement 0.77 0.90 0.79 0.89 0.94

obituaries 0.98 1.00 1.00 0.96 1.00

Vietnam War 0.91 0.94 0.98 0.98 0.99

weather 0.94 0.92 0.94 0.94 0.95

WWI 0.72 0.74 0.51 0.89 0.92
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Embedding models

Embeddings can be used to group like data together,
typically through clustering or knn-retrieval
Off-the-shelf transformer (e.g., BERT, RoBERTa, etc.)
embeddings have undesirable geometric properties
(Ethayarajh, 2019)
A method called contrastive training can be used to make
the distances between embeddings in the vector spaced
created by a neural network more meaningful (Wang,
2021)
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Contrastively trained embedding models

Contrastively trained embedding models learn a mapping
from unstructured data to continuous vector space, such
that instances that belong to the same class have similar
embeddings and instances that belong to different classes
have dissimilar embeddings
More details on contrastive learning are given in my JEL
review article “Deep Learning for Economists”, or on the
contrastive learning post at
https://econdl.github.io/

There is a lot of different information incorporated in an
off-the-shelf embedding (e.g., Rogers et al., 2020)
Hence, some fine-tuning is often necessary for the model
to learn what dimension(s) of texts/images are of
relevance to the task at hand

https://econdl.github.io/
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Contrastively trained embedding models

Consider the Comparative Agendas dataset, which has
high quality topic tags about legislative acts
Off-the-shelf embeddings from Sentence Bert and OpenAI
do not do a particularly good job of grouping legislation on
different topics together
However, with limited paired training data, we can
contrastively tune a model to map legislation on different
topics to different regions of embedding space, and
legislation on the same topic nearby
This model translates well across legislative settings
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Off-the-shelf (S-BERT) embedding model
and U.S. congressional bills data

Cosine similarities between the embeddings of legislative texts,
within topic (blue) and across topic (red)
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Off-the-shelf (OpenAI) embedding model and
U.S. congressional bills data

Cosine similarities between the embeddings of legislative texts,
within topic (blue) and across topic (red)
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Fine-tuned embedding model and U.S.
congressional bills data

Cosine similarities between the embeddings of legislative texts,
within topic (blue) and across topic (red)
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Fine-tuned embedding model and UK
Parliamentary Acts data

Cosine similarities between the embeddings of legislative texts,
within topic (blue) and across topic (red)
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Applications of Embedding Models

Data exploration (classes unknown ex ante)
Reproduction of news articles
Biggest stories
Most similar news stories to a query

Many classes
Record linkage in structured data
Linking individuals mentioned in unstructured texts

Adding classes at inference time
Document transcription
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Detecting Reproduced Content with
Embeddings

Detecting noisily reproduced content is important both for
first order social science questions and for commercial
applications

Media historian Julia Guarneri (2017) writes: “by the 1910s
and 1920s, most of the articles that Americans read in their
local papers had either been bought or sold on the national
news market... This constructed a broadly understood
American ‘way of life’ that would become a touchstone of
U.S. domestic politics and international relations throughout
the twentieth century.”
Important for de-duplicating training data and controlling
test set leakage
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Reproduced Content

We develop novel methods - combining a customized
embedding model and single linkage clustering - for
detecting noisily reproduced content (Silcock,
D’Amico-Wong, Yang, and Dell, 2022)
We have applied this to detecting noisily reproduced
historical news articles on a massive scale (Silcock, Arora,
D’Amico-Wong, and Dell, 2024) and to evaluating test set
leakage in foundation models (Sainz et al., 2024)
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NEWS-COPY

Neural Non-Neural

Most scalable Bi-encoder (91.5) LSH (73.7)

Less scalable Re-ranking (93.7) N-gram overlap (75.0)

Table: The numbers in parentheses are the Adjusted Rand Index for
four different models - a bi-encoder, a “re-ranking” strategy that
combines a bi- and cross-encoder, locally sensitive hashing (LSH),
and N-gram overlap. Hyperparameters were chosen on the
NEWS-COPY validation set, and all models were evaluated on the
NEWS-COPY test set.
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Newswire Dataset

Description Count

Front page articles 137,941,190

Unique articles (including singletons) 99,472,910

Unique articles reproduced > 3 times 2,889,012

Unique wire articles 2,719,607

Total reproductions of wire articles 32,107,676

Table: Counts of articles meeting various criteria in our raw digitized
newspaper corpus.
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Domestic Datelines

Figure: Reproduction of newswire articles with domestic datelines.
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International Datelines

Figure: Reproduction of newswire articles with international datelines.
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Newswire Topics

Figure: Share of reproduced newswire articles with a given binary
topic tag, across time.
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Newswire Topics

Figure: The distribution of multiclass topic tags, trained on data from
the Comparative Agendas project.
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Headlines
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HEADLINES

Decade Headline Cluster Positive Word Words Per Line Lines Per Character

Count Count Pair Count Count Headline Count Headline Error Rate

1920s 4,889,942 1,032,108 28,928,226 68,486,589 14.0 18,983,014 3.9 4.3%

1930s 5,519,472 1,126,566 37,529,084 75,210,423 13.6 21,905,153 4.0 3.7%

1940s 6,026,940 1,005,342 62,397,004 61,629,003 10.2 19,538,729 3.2 2.4%

1950s 7,530,810 1,192,858 100,527,238 61,127,313 8.1 20,823,786 2.8 2.3%

1960s 6,533,071 926,819 108,415,279 46,640,311 7.1 16,408,148 2.5 3.7%

1970s 3,664,201 585,782 52,981,097 24,472,831 6.7 7,829,510 2.1 3.2%

1980s 703,052 170,507 2,857,722 5,161,537 7.3 1,502,893 2.1 1.5%

Total 34,867,488 6,039,982 393,635,650 342,728,007 9.8 106,991,233 3.1

Table: Descriptive statistics of HEADLINES.
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Computational Advantages

Embed Compute Build Commun. Total Mean Times

Articles Similarity Graph Detect. Time Reproduced

Bi-Encoder 8:38:52 3:04:53 0:01:23 0:00:02 11:45:10 6.41

(GPU) (GPU) (GPU) (GPU) (GPU)

Hashing 3:39:05 0:00:55 0:00:08 3:40:08 11.55

(CPU) (GPU) (GPU) (mostly CPU)

Table: This table reports computational efficiency in scaling the
bi-encoder and LSH methods to a 10 million article corpus.
Parentheses indicate whether the calculations were run on a CPU or a
single NVIDIA A6000 GPU card. Mean times reproduced reports the
average size of duplicated article communities that each method
estimates.
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Biggest Stories of the Year

We would like to know which news stories receive the
most coverage
We have no idea what those stories are ex ante - cannot
use a classifier
Instead, custom train a large language model to map
articles about the same story to similar vector
representations using paired data from allsides
Cluster the resulting embeddings with single linkage
clustering
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American Stories Dataset

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Total Text Bounding Boxes Other Bounding Boxes

Boxes Articles Headlines Captions Bylines Images Ads Tables Mastheads

Legible - 335M 368M 9.7M 14.7M - - - -

Illegible - 26M 27M 0.9M 2.5M - - - -

Borderline - 77M 22M 1.3M 1.2M - - - -

Total 1.14B 438M 417M 11.9M 18.4M 9.1M 221M 16.3M 4.9M

Table: Dell et al. (2023)
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Biggest Stories
Year Biggest story Year Biggest story

1885 Death of General Grant 1903 Panama Canal Treaty

1886 Southwest Railroad Strike 1904 Russo-Japanese War

1887 Vatican supports Knights of Labor 1905 Russo-Japanese Peace Process

1888 Rail strikes 1906 Hepburn Railroad Rate Bill

1889 Samoan Crisis 1907 Mining accidents

1890 1893 World’s Fair planning 1908 Taft presidential victory

1891 New Orleans Lynchings 1909 Race to the North Pole

1892 Homestead Steel Strike 1910 Rail strikes

1893 World’s Fair, Chicago 1911 Canadian Reciprocity Bill

1894 Wilson–Gorman Tariff Act 1912 Republican National Convention (Taft v Roosevelt)

1895 British occupation of Corinto, Nicaragua 1913 Underwood-Simmons Tariff Act

1896 Bimetallism Movement 1914 World War I

1897 Coal Miners’ Strike 1915 World War I

1898 Cuban War of Independence 1916 Pancho Villa Expedition

1899 Philippine-American War 1917 World War I

1900 Anglo-Boer War 1918 World War I

1901 U.S. Steel Recognition Strike 1919 Treaty of Versailles

1902 Anthracite Coal Strike 1920 Rail strikes

Table: Dell et al. (2023)
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News Déjà Vu

We use the same model (after masking named entities) to find
the most similar historical story to current news stories
(Franklin, Silcock, Arora, Bryan, and Dell, 2024).
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Most Reproduced Images

As with text, we can use deep learning to track noisily
reproduced images
Map different versions of the same image to similar vector
representations (custom model trained on augmented
data) and cluster
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Space Program

Saturn-V Launching (1967) Apollo 11 Mission (1969)
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Violence in Progress

James McClain (1970) Attack on Russian Premier (1971)
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Plane Crashes

Wreckage of Plane Crash (1969) Search in the Woods (1970)
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Women in the Press

Jackie Kennedy Remarried (1968) Manson Murderers (1971)
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Photos that Changed History?

Saigon Execution (1968) The Napalm Girl (1972)
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Photos That Changed History?

Not very widely reproduced
No impact on abnormal stock returns of Vietnam War
contractors; minimal impact on abnormal returns of Dow
Chemicals
Mentions of the Napalm Girl photo take off after the
woman in it started a public advocacy charity
What we remember about the past is filtered through the
present
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Record Linkage

Linking information across diverse sources is fundamental
to many pipelines
For example, researchers and businesses frequently link
individuals or firms across censuses and company records
or link products/industries across datasets
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Traditional Record Linkage

Conventional string similarity measures rely on edit
distance or n-gram overlap to determine how two strings
differ - they are unable to bring in semantic information.
For example, the distance between ABC Co. and ABC
Corporation shouldn’t be high, as Co. is a common
abbreviation of the word Corporation.
Yet these two string have a high Levenshtein edit distance.
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LinkTransformer (Arora and Dell, 2024) brings large
language models to data frame manipulation tasks like
merges, deduplication, and clustering.

It supports standard merging, merging with blocking and
multiple keys, bypassing translation with cross-lingual
merges, aggregation and classification, clustering, and
de-duplication.

It supports models on the Hugging Face Hub and OpenAI
Embedding models. We’ve trained our own collection of
over 20 open-source language models for 6 different
languages and different tasks.
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Embeddings for Record Linkage
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The API is designed to be familiar to practitioners coming
from environments like R and Stata.

Training your own models is as easy as one line of code.

It also includes a classification module, to facilitate
sequence-level text classification
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Basic Functionality
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Multilingual Merging
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Deduplication
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Aggregation
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Model Training
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Visual Record Linkage

OCR tends to make errors that are homoglyphic, confusing
characters with a similar visual appearances; this can be
utilized for record linkage of noisily OCR’ed texts
Together with Xinmei Yang, Shao-Yu Jheng, and Abhishek
Arora, we leverage vision transformers to measure visual
similarity across characters and used this to improve
record linkage for the CJK script
Our HomoglyphsCJK package is available at https:
//pyup.io/packages/pypi/homoglyphscjk/

https://pyup.io/packages/pypi/homoglyphscjk/
https://pyup.io/packages/pypi/homoglyphscjk/
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Character Variation Across Fonts
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Homoglyph Examples
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Ancient Homoglyphs

Figure: Ancient Homoglyphs. This figure shows homoglyph sets constructed
for ancient Chinese, with the descendant modern Chinese character and a
description of the character’s ancient meaning.
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Image and Text Embeddings Can Be
Combined
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Input-Output Networks
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Entity disambiguation with embeddings

Arora, Silcock, Heldring and Dell (2024).
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Entity disambiguation

Mentions over time of entities that appeared most commonly in
newswire articles.
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Adding Classes at Inference Time

Embedding models are also well suited to contexts where
you may need to add additional classes after training the
model, which cannot be done when using a classifier head
One context where I frequently encounter this is
transcribing documents
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EffOCR Architecture

Carlson, Bryan, and Dell (2024)
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Sample Efficiency
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Our EffOCR package (Bryan, Carlson, Arora, and Dell,
2024) makes it straightforward to tune your own custom
OCR model, including for very low resource settings
We have a demo notebook that you can use to train your
own OCR model to recognize polytonic (ancient) Greek
We show that this customized model, which can be trained
with free student compute credits, beats Google Cloud
Vision, the state-of-the-art for ancient Greek
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Regression Models

In machine learning, the term regression refers to the
prediction of continuous outcomes
Regression using deep neural networks is analogous to
classification
Document image analysis is a prime example
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Document Image Analysis

Document Input DIA Pipeline Structured
Output
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Designing DIA Pipelines Can Be Challenging

Previously, there was no full-fledged infrastructure for easily
curating document image datasets and fine-tuning or
re-training layout analysis models. Relevant resources were in
different repos and used inconsistent backends and APIs
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I worked with pre-docs Zejiang Shen and Jake Carlson
and open-source collaborators to integrate the models and
tools we developed into an open-source package called
LayoutParser

The aim is to streamline the use of DL in document image
analysis (DIA) pipelines
Layout Parser provides simple and intuitive interfaces for
applying and customizing DL models for layout detection
and other document processing tasks
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Layout Detection
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Model Customization
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Off-the-Shelf Digitization of Historical
Newspapers Fails
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Layouts
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Another Example Document
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Layout Analysis

Figure: We train an object detection model (Mask R-CNN) to
recognize the document layouts.
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Conclusion

Deep learning provides powerful tools for processing
unstructured economic data, creating robust
representations for downstream analyses
Becoming familiar with deep learning methods, how they
apply to economics, and how they can be implemented
and debugged can entail significant startup costs
More resources can be found at
https://econdl.github.io/

https://econdl.github.io/
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Unstructured Data in Economics

Economists commonly use unstructured data—images,
text, audio, and video—in empirical research.
Unstructured data are not used directly in statistical
analyses due to their high dimensionality, computational
complexity, and lack of interpretability.
Instead, researchers extract low-dimensional, structured
features from unstructured data.
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Unstructured Data in Economics

Structured data on governance, institutions, political
stability, policy uncertainty, conflict, and violence are
extracted from news and other text sources.
Researchers derive sentiment, topics, and other structured
features from government transcripts, corporate filings,
earnings calls, patents, and web texts.
Nighttime satellite imagery measures economic activity,
development, and urbanization.
Remote sensing data supplement sparse ground
measurements of temperature, precipitation, pollution,
agriculture, land use, illicit activities, and deforestation.
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Neural Networks and Unstructured Data

Extracting structured data from unstructured sources
traditionally required costly manual annotation or complex
human-engineered rules.
Large-scale initiatives were often necessary to generate
such data.
Advances in computing and deep learning have drastically
reduced these costs.
Deep neural networks are state-of-the-art for large-scale
feature extraction (Goodfellow, 2016) and are widely used
by individual researchers to create data.
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Biased Predictions

However, neural networks will not generically produce
unbiased predictions in finite samples.
Choices related to network architecture, the distribution of
training data, and various implementation details can all
introduce systematic biases.
Moreover, the use of nonlinear transformations at each
layer of the neural network and the frequent application of
neural networks to binary or multiclass classification
problems violate classical measurement error
assumptions.
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Biased Predictions

Biases propagate to estimators that rely on these
predictions, affecting both point estimates and uncertainty
quantification.
In large datasets, sampling variation is small but a poorly
performing first-step predictor can introduce substantial
uncertainty.
Concerns about imputation bias are further heightened by
the availability of off-the-shelf neural networks.
Different neural networks may introduce different biases
that then propagate, raising concerns that neural
network-based imputations could be selectively used to
produce desirable results.
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Costly Investments to Improve Neural
Networks

A frequent question that arises is how accurate neural
network predictions need to be for economic research.
Improving neural network performance often involves
significant costs, including training larger models,
collecting more or higher-quality training data, and refining
complex implementation details.
To ensure unbiased estimates and determine whether
costly investments to improve first step predictions are
necessary, researchers need a framework that explicitly
accounts for first-step imputation error.
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Missing at Random Structured Data

To address these challenges, we develop MAR-S (Missing
At Random Structured Data).
MAR-S provides a framework for conducting valid,
efficient, and robust inference on estimands that
incorporate unstructured data through their
low-dimensional features.
MAR-S frames inference with unstructured data as a
missing data problem, because raw unstructured datasets
commonly lack the low-dimensional summaries that are
relevant to economic analyses.
The framework builds upon the Rubin (1976) missing at
random (MAR) mechanism.
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MAR-S

MAR-S leverages foundational results from
semiparametric inference with missing data, which
provides a well-established, broadly applicable, and
assumption-light approach to debiasing estimators.
The key idea is to collect a validation sample containing
ground truth feature values, use this sample to estimate
the bias in the imputed data, and adjust estimates
accordingly.
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Ground Truth

Ground truth is obtained through a costly process such as
annotation by highly skilled and motivated human experts
or the collection of ground station data.
While neural networks are treated as a black box, their
outputs must be interpretable through establishing a clear,
implementable procedure for measuring the features to be
extracted from unstructured inputs.
The validation sample must meet the ‘missing at random’
assumption: after adjusting for observables, annotated
and unannotated structured data should be comparable in
their ground truth values.
This parallels the ‘selection on observables’ assumption in
causal inference.
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Why is “Missing at Random” so useful?

By imposing missing at random on annotation, MAR-S
minimizes restrictions on the imputation function.
This is particularly valuable when working with deep
neural networks whose biases shift in a complex way with
input distributions and implementation details.
The missing-at-random restriction is often feasible in a
world where researchers are increasingly creating their
own data.



Inference with
Unstructured Data

Carlson, Dell

Introduction

Literature

The MAR-S
Framework

Applications

Extensions

Empirical Examples

Conclusion

Systematically missing data can be the
motivation for imputation

Departures from missing at random could be addressed
with additional restrictions on the imputation
function—such as assuming a stable relationship between
imputed and ground truth data across annotated and
unannotated samples. (Rambachan et al., 2024)
A fundamental principle in machine learning is that
predictive accuracy deteriorates when there is domain
(covariate) shift away from the training data distribution
(Ben-David et al. (2010)).
Neural networks are typically trained on a subset of
annotated data or - in the case of off-the-shelf models - on
easily accessible data that often differs from observations
where ground truth is costly to obtain.
MAR-S directly addresses this fundamental limitation of
neural networks through the missing at random
requirement.
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Contributions

Debiasing with a ground truth annotation sample is central to
recent influential frameworks for valid statistical inference using
predictions from black box AI models (Angelopoulos et. al,
2023,Egami et. al, 2023,Ludwig et. al, 2024). The contribution
of MAR-S to this literature is threefold:

1 Developing a theoretical framework that unifies this work
and links it to a variety of much older, familiar problems

2 Identifying estimators that are both unbiased and efficient
3 Making it feasible to apply debiasing to a wide variety of

settings by deriving estimators for common scenarios that
have received little attention in the existing literature
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Theoretical Insights
MAR-S provides a theoretical framework that unifies
recent work on inference with black-box AI
models—developed independently across disciplines with
limited interactions—and connects this work to:

An econometrics literature on measurement error
(Schennach (2016); Chen et al. (2005, 2008))
Widely used inference methods that incorporate machine
learning-based first steps (e.g., Chernozhukov et al. (2018,
2022a,b))
Classical literatures on missing data and causal inference
(.g., Rubin (1978); Imbens and Rubin (2015); Robins et al.
(1994)).

MAR-S improves our understanding of inference with
unstructured data by connecting it to familiar problems,
such as causal inference.
Viewing inference with unstructured data and causal
inference as special cases of a more general missing data
problem highlights various relevant insights from
semiparametric inference.
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Efficiency

We depart from existing work on black box AI by
emphasizing a semiparametric approach, which provides
new insights about efficiency.
For an estimator to achieve asymptotic efficiency, the
imputation of missing structured data should depend not
only on unstructured data (e.g., texts or images) but also
on context-specific structured variables that help estimate
the target parameter (e.g., other covariates in a regression
model).
Some existing work (Angelopoulos et al., 2024) claims
semiparametric methods are too complicated to be
practical; unlikely to be true in economics.
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Unbiased and Efficient Inference in Practice

We derive robust and efficient estimators for descriptive
moments, linear regression model coefficients, treatment
effects identified through linear IV models, modern
difference-in-differences estimands, and regression
discontinuity estimands under local randomization.
Because it employs a semiparametric approach, MAR-S
could also be integrated with recent advances in automatic
debiasing (Chernozhukov et al., 2022b; van der Laan et
al., 2025) or automatic (functional) differentiation (Luedtke,
2024) to further extend its applicability.
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MAR-S Extensions

Existing de-biasing approaches assume that ground truth
data are available at the same level of aggregation as the
parameter of interest.
However, economic analyses often require aggregating
structured data, and non-linear aggregations are common.
Collecting ground truth data at this aggregate level would
often require labeling thousands or even millions of
unstructured data instances just to obtain a single ground
truth observation.
To address this challenge, we develop approaches that
leverage MAR-S for debiased inference when ground truth
data are available only at a disaggregated level, while the
parameter of interest is derived from structured data that
are aggregated and (potentially) transformed.
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MAR-S Extensions

When working with large datasets, the structured data of
interest often represent a “rare event.”
The typical approach to this challenge, which arises
frequently in empirical economics, is to only annotate data
that meet some filter.
Unless the population of interest is only instances that
meet the filter, this violates the assumption that the
annotation function not place zero probability on
annotating certain types of observations.
Equivalent to a strong overlap assumption in causal
inference.
The rare event estimation literature suggests optimizing
the annotation function to reduce variance, e.g., by
incorporating importance sampling techniques.
We refer readers to an ML literature that develops this
approach to annotation (Zrnic and Candes, 2024).
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Literature
Missing data: We build upon foundational work by Rubin
(1976); Little and Rubin (2019); Robins et al. (1994, 1995);
Robins and Rotnitzky (1995); Bang and Robins (2005)
Semiparametric inference: (Pfanzagl (1982); Bickel et al.
(1998); Kennedy (2016, 2018)) Semi-parametric inference
is well-suited for missing data because it relies on
relatively mild assumptions about the DGP (Tsiatis, 2006).
These frameworks are supported by theories of
minimax-style efficiency, which provide a benchmark for
comparing the performance of different estimators (Newey,
1994; van der Vaart, 1998)
Black-box debiased AI: (Angelopoulos et al., 2023, 2024;
Zrnic and Candès, 2024; Zrnic and Candes, 2024, Egami
et al., 2023, 2024, List et al., 2024, Ludwig et al. (2024))
Similarly combines black box AI predictions with ground
truth values to construct unbiased estimators. This
literature does not take a semiparametric approach or
consider efficiency. We also cover many additional
common empirical settings.



Inference with
Unstructured Data

Carlson, Dell

Introduction

Literature

The MAR-S
Framework

Applications

Extensions

Empirical Examples

Conclusion

Literature

Measurement error literature: Highlights that validation
samples provide a general, model-agnostic method for
correcting non-classical measurement error in nonlinear
models (Chen et al., 2005).
Debiased machine learning: (Chernozhukov et al., 2018,
2022a,b) MAR-S is based on the same fundamental
semiparametric analysis as DML. Both lead to AIPW
estimators, derived in different ways.
Causal inference and missing data: (Little and Rubin,
2019; Ding and Li, 2018; Hirano et al., 2003; Imbens and
Rubin, 2015; Athey et al., 2019) Causal inference is itself a
missing data problem, leading to many parallels,
particularly through the AIPW estimator, which is doubly
robust (Robins et al., 1994; Robins and Rotnitzky, 1995;
Scharfstein et al., 1999). Double robustness relaxes rate
requirements on the estimation of nuisance parameters.
Double robustness is a crucial property of MAR-S.
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Missing At Random Structured data

To perform robust and efficient inference with unstructured
data, we recast the problem as inference on missing
structured data.
Structured data, M ∈ M, are low-dimensional data that
can be used directly in estimating equations.
Unstructured data, U ∈ U , are high-dimensional and
unsuitable for direct use in estimation
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Missing At Random Structured data

Structured data are observed through “annotation”.
Because accurate annotation is too expensive to scale, we
learn a function to impute missing structured data.
This allows the researcher to leverage the full unstructured
dataset, often orders of magnitude larger than the
annotated data.
Deep neural networks increasingly serve as this
imputation function µ̂.
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Potential Outcomes for Missing Data

MAR-S is closely linked to the Rubin Causal Model (Neyman,
1923; Rubin, 1974, 1978; Imbens and Rubin, 2015), and hence
we incorporate the notation of potential outcomes into MAR-S

We observe a random variable M ∈ M ⊆ R that is subject
to some data missingness, given by indicator A ∈ {0,1},

M = A Ma=1 + (1 − A)Ma=0

We set M(a = 0) = 0 w.p.1 WLOG, and, for notational
convenience, define M∗ := M(a = 1), and so

M = AM∗.

We call M∗ the “ground truth” potential outcome.
We call A the “annotation indicator.”
We also assume P(A = 1) ≫ 0, which means that we
have “annotated” some non-negligible count of our
unstructured data.
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Assumptions

Assumption 1 (Consistency of potential outcomes)
For ground truth potential outcome of interest M∗ ∈ M,
observed outcome of interest M ∈ M× {0}, and annotation
indicator A ∈ {0,1},

M = AM∗.

Annotation status needs to be well-defined, which will tend
to hold trivially.
The ground truth label for any given instance depends only
on its own annotation status, not on the annotation status
of other instances.
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Assumptions

Assumption 2 (Missing at random structured data)
For ground truth potential outcome M∗ ∈ M, annotation
indicator A ∈ {0,1}, observed covariates X ∈ X , and
unstructured data U ∈ U :

[(U,M∗) ⊥⊥ A] | X .

After adjusting for observables X , annotated and
unannotated structured data are comparable in their
ground truth values.
This is analogous to “selection on observables” in causal
inference.
If data are annotated at random, (U,M∗) ⊥⊥ A, the
assumption is guaranteed to hold.
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Assumptions
Assumption 3 (Known, bounded annotation score
function)
We define the annotation score function to be

π(x) := P(A = 1 | X = x) (1)

We assume that π(x) is fixed, known, and bounded away from
zero and one, i.e., π(x) ∈ [η,1 − η] for 0 < η ≤ 1 − η < 1 and
for all x ∈ X .

This embeds the assumption of “strong overlap” often
seen in observational causal inference settings.
The naming convention “annotation score function” mimics
the usual causal inference terminology of a “propensity
score function.”
The researcher often decides how to annotate
unstructured data to produce ground truth instances of
structured data, making this assumption plausible, but it
can be relaxed.
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Assumptions

In observational causal inference, a strong overlap
assumption becomes less plausible as the dimension of
the variable granting unconfoundedness grows (D’Amour
et al. 2021).
Typically, X is fairly low-dimensional, unlike U, which is
high-dimensional.
However, X may be a low-dimensional measure of U.
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Keywords and the Annotation Function

Social scientists often use keyword-based filtering to
annotate text data, assigning some probability of
annotation to texts with specific keywords while excluding
all others from the annotated sample.
This violates strong overlap by assigning zero probability
to some unstructured data instances.
Intuitively, we would expect the measurement error of a
language model to be systematically correlated with the
terms that appear in the text.
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Assumptions

Assumption 4 (MSE consistency of the imputation
function)
For function µ(x̃), imputation function µ̂(x̃), and features
X̃ ∈ X̃ , we have that

E
[(
µ̂(X̃ )− µ(X̃ )

)2
]
= o(1).

Intuitively, this condition says that we need the expected
square error of our estimator to go to zero as the amount
of data we train the estimator with goes to infinity; in other
words, the estimator is well-specified.
Very mild in the context of deep neural networks. Recent
theoretical work has shown that certain classes of deep
neural networks learned with gradient descent are
universally consistent (Drews and Kohler, 2024).
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If the annotation score function is estimated

We lose some robustness in our estimators, and the
researcher now needs to assume that the convergence of
the imputation and estimated annotation score functions
occurs at a sufficiently fast rate (Chernozhukov et al.,
2018; Kennedy, 2023; Wager, 2024), e.g., at order n−1/4

rates.
While classic semiparametric theory yields “curse of
dimensionality” results for learning high-dimensional
(nonparametric) conditional expectation functions, in
practice, nonparametric regression using deep neural
networks appears to exhibit fast rates of convergence
(Klaassen et al., 2024); recent theory reveals that neural
networks can be especially well suited for estimating
nonparametric first-steps/nuisances for treatment effects
under selection on a diverging number of confounders
(Chen et. al, 2024).
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Efficient Inference with MAR-S

A key advantage of the MAR-S framework is its ability to
enable valid, efficient, and robust inference in unstructured
data settings.
A semiparametrically efficient estimator of a functional
achieves the lowest possible asymptotic variance among
all regular, asymptotically linear (RAL) estimators of that
functional (van der Vaart, 1998).
This lower bound corresponds to the variance of the
efficient influence function (EIF) associated with the
functional.
Intuitively, an influence function captures how a small
change in the data distribution impacts the value of a
functional.
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Robust Inference with MAR-S

Robust estimation, in the context of semiparametric
inference, focuses on constructing estimators that relax
the rate requirements for first-step parameter estimates in
multi-step procedures.
The first-step parameter estimators are not directly used to
estimate the primary parameter of interest but are
essential for constructing the final estimator.
Intuitively, robust estimators are designed to tolerate
trade-offs in estimation error among their first-step
components while maintaining asymptotic normality and√

n-consistency.
In such estimators, worse performance in one component
can be offset by better performance in another.
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Double Robustness

An estimator is doubly robust when there are two nuisance
functions to be estimated, and the estimator can balance
errors between them without losing

√
n-consistency.

Like other AIPW estimators, MAR-S is (weakly) doubly
robust.
The first-step estimator µ̂ (e.g., a deep neural network) is
subject to weak conditions because we have access to the
most accurate possible first-step estimator for the
annotation function π, which is π itself.
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Implementing MAR-S

1 Identification: A researcher starts with a target functional
θ : P → R. Assumptions 1 and 2 will allow the researcher
to recover point identification for their target functional
under missing structured data.

2 Deriving the efficient influence function: If the point
identified target functional is pathwise differentiable, then it
has a unique efficient influence function (EIF), computed
following Kennedy (2023).

3 Constructing the robust and efficient estimator: The
researcher may follow one of several procedures for
forming a robust, efficient estimator: adding a “one-step
correction” to a plug-in estimator based on the EIF; solving
an “estimating equation” based on the EIF; or pursuing a
targeted maximum likelihood estimation procedure.

4 Sample splitting for estimation: Implement estimation
via data splitting (or cross-fitting).
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Applications

We illustrate the MAR-S framework in five empirical
settings of particular interest to economists: descriptive
moments, linear regression, linear instrumental variables
(IV) models, difference-in-differences (DiD) designs, and
regression discontinuity designs (RDD) under local
randomization, and then turn to common challenges such
as aggregation of missing structured data.
We develop each example by assigning a single variable
to be M (missing structured data) (e.g., an outcome or
treatment), although MAR-S can be equally applied to
settings where alternative - or multiple - variables are
imputed from unstructured data.
MAR-S is limited to pathwise differentiable functionals, in
the sense that

√
n-consistent estimators are not

guaranteed to exist for nonpathwise differentiable
functionals, and as such efficiency would be ill defined.
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MAR-S Mean Functional

Our core object of interest is the MAR-S mean functional

Definition 1
We define a “MAR-S mean functional” as any functional that
can be written as

θ(P) = EP [M̃∗]

where M̃∗ = g(M∗,V ) for a known deterministic function g and
known random variable V (which is not itself a function of
π(X )) with [V ⊥⊥ A] | X . g is homogeneous of degree one in its
first argument.

Many functionals of missing structured data—including all the
functionals of missing structured data considered in this
paper—can be written as MAR-S mean functionals.
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MAR-S Mean Functional

We begin by stating the following lemma, which greatly
simplifies the derivations of efficient influence functions for the
applications considered.

Lemma 2
The efficient influence function for a point identified MAR-S
mean functional EP [µ̃(X̃ )] under a nonparametric statistical
model P ∋ P is the same as the efficient influence function of
EP [µ̃(X̃ )] under the semiparametric statistical model Pπ ∋ P
induced by Assumption 3.
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MAR-S Mean Functional
Under the MAR-S framework, the statistical model of the
data under consideration is semiparametric when the
annotation score function π is known.
Deriving efficient influence functions under semiparametric
statistical models is typically more challenging than doing
so under fully nonparametric statistical models, for which
there is only one influence function, which is the efficient
influence function.
Lemma 2 shows that the EIF for a MAR-S mean functional
θ under a nonparametric statistical model is also the
correct EIF for θ under the semiparametric model.
Intuitively, this lemma holds because perturbing the
distribution given by the annotation score of a MAR-S
mean functional does not change the value of the
functional.
If we had labeled our data in a different (but valid) way, the
population-level value of the parameter being estimated
would remain unchanged.
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Identification of a Mean with Missing Data

Consider the dataset {Wi}n
i=1 where Wi := (Mi ,Ai ,Xi ,Ui), with

variable of interest Mi ∈ M× {0} ⊆ R, annotation indicator
Ai ∈ {0,1}, observed covariates Xi ∈ X ⊆ Rk , and
unstructured data Ui ∈ U ⊆ Rℓ. We define X̃i := (Xi ,Ui).

We wish to compute the mean, denoted by θ, as the expected
value of M∗

i :
θ := E [M∗

i ].

Under Assumptions 1 (consistency of potential outcomes) and
2 (missing at random structured data), we can identify θ as

θ = E
[
µ(X̃i)

]
,

where µ(X̃i) := E [Mi | Ai = 1, X̃i ] = E [Mi | Ai = 1,Xi ,Ui ].
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Identification of a Mean with Missing Data
Proposition 1
The efficient influence function for functional EP

[
µ(X̃i)

]
is

φ(Wi) = µ(X̃i) +
Ai

π(Xi)
(Mi − µ(X̃i))− θ,

where π is the annotation scoring function.

As such, the (doubly) robust and efficient one-step estimator is

θ̂ =
1
|I|
∑
i∈I

[
µ̂(X̃i) +

Ai

π(Xi)
(Mi − µ̂(X̃i))

]
,

where I is the set of indices of the data allocated to the
“estimation” partition of a random data split, and µ̂ is estimated
on the other “training” partition.

This is the AIPW estimator (because M∗ is just a potential
outcome).
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Debiased mean estimation

Suppose that π(Xi) = |I ∩ J |/|I|, where J is the set of indices
corresponding to annotated data points. Then we see that

θ̂ =
1
|I|
∑
i∈I

[
µ̂(X̃i) +

Ai

π(Xi)
(Mi − µ̂(X̃i))

]
(AIPW)

=
1
|I|
∑
i∈I

µ̂(X̃i)︸ ︷︷ ︸
A

+
1

|I ∩ J |
∑

i∈I∩J

(M∗
i − µ̂(X̃i))︸ ︷︷ ︸

B

(PPI)

The term A in the second expression is the best
imputation-based guess of E [M∗

i ] in the estimation sample (the
naive “plug-in” estimator), and the term B is a bias correction
term–an estimate of the measurement error of our imputation
function in the annotated sample. This expression is
reproduced in recent work on “prediction-powered inference”
(Angelopoulos et al., 2023)
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Debiased mean estimation
Moreover:

θ̂ =
1
|I|
∑
i∈I

[
µ̂(X̃i) +

Ai

π(Xi)
(Mi − µ̂(X̃i))

]
(AIPW)

=
1

|I ∩ J |
∑

i∈I∩J

M∗
i︸ ︷︷ ︸

C

+

(
1
|I|
∑
i∈I

µ̂(X̃i)−
1

|I ∩ J |
∑

i∈I∩J

µ̂(X̃i)

)
︸ ︷︷ ︸

D

.

(FRA)

The expression (FRA) is reported in recent work on “flexible
regression adjustment” (List et al., 2024). Under this
formulation, we can view term C as our best estimate of the
quantity of interest using only ground truth data. We then
leverage the imputation function µ̂ as a form of nonparametric
regression adjustment in term D, with the same intuition as a
linear regression adjustment: we adjust for systematic
differences between our large unlabeled sample and our small
annotated ground truth sample as summarized by µ̂.
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MAR-S and Double/Debiased Machine
Learning

MAR-S also relates closely to the DML framework
(Chernozhukov et al., 2018).
The MAR-S AIPW estimator is equivalent to one derived
via the Neyman orthogonal score for estimating a potential
mean under the “selection on observables” assumption in
the DML causal inference setting.
This is not coincidental, as we saw that the expected value
of missing structured data can be interpreted as an
average potential outcome and deriving a Neyman
orthogonal score can be viewed as an “estimating
equations” approach to constructing semiparametrically
efficient estimators (Kennedy, 2023).
Because MAR-S is based on the same fundamental
semiparametric analysis as DML, there are likely many
ways to apply insights from DML, such as automatic
debiasing corrections (Chernozhukov et al., 2022a,b).



Inference with
Unstructured Data

Carlson, Dell

Introduction

Literature

The MAR-S
Framework

Applications

Extensions

Empirical Examples

Conclusion

Linear Regression

Consider the dataset {Wi}n
i=1, where Wi = (Mi ,Ci ,Ai ,Xi ,Ui),

with outcome Mi ∈ M× {0} ⊆ R, regressors Ci ∈ C ⊆ Rd ,
annotation indicator Ai ∈ {0,1}, observed covariates
Xi ∈ X ⊆ Rk , and unstructured data Ui ∈ U ⊆ Rℓ. We further
assume that Wi

iid∼ P for some distribution P, and that
[Ci ⊥⊥ Ai ] | Xi .

We assume that

M∗
i = CT

i θ + εi , E [εi | Ci ] = 0,

where θ ∈ Θ ⊆ Rp. We are interested in identifying and
estimating the j-th regression coefficient θj .
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Linear Regression

By the Frisch-Waugh-Lovell theorem, we have that

θj = E
[
C⊥

i,j
2
]−1

E
[
C⊥

i,j M
∗
i
]
,

where C⊥
i,j := Ci,j − E∗[Ci,j | 1,Ci,1, . . . ,Ci,j−1,Ci,j+1, . . . ,Ci,d ],

and where E∗ is the linear projection operator.

Let X̃i := (Xi ,Ui ,Ci). Then, by Assumptions 1 (consistency of
potential outcomes) and 2 (missing at random structured data),
we can identify θj as

θj := θ−1
j,denθj,num = E

[
C⊥

i,j
2
]−1

E
[
C⊥

i,jµ(X̃i)
]

where µ(X̃i) = E
[
Mi | Ai = 1, X̃i

]
.
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Linear Regression

Let Či,j := Ci,j − Ê∗[Ci,j | 1,Ci,1, . . . ,Ci,j−1,Ci,j+1, . . . ,Ci,d ],
where Ê∗ is the least squares operator. We can form the
efficient estimator for θj as

θ̂j := θ̂j,numθ̂
−1
j,den =

∑
i∈I Či,j

[
µ̂(X̃i) +

Ai
π(Xi )

(Mi − µ̂(X̃i))
]

∑
i∈I Č2

i,j

.

This is just a residualized regression with pseudo-outcome
φ̂i := µ̂(X̃i) +

Ai
π(Xi )

(Mi − µ̂(X̃i)), i.e.,

θ̂j := θ̂j,numθ̂
−1
j,den =

∑
i∈I Či,j φ̂i∑

i∈I Č2
i,j

.
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The Efficient Imputation Function

Importantly, the imputation function µ̂ is a function of
context specific variables, i.e., X̃i := (Xi ,Ui ,Ci).
Under Assumption 2, the imputation function should
asymptotically approximate the function
E [M | A = 1,X = x ,U = u,C = c] in order for estimation
to be efficient.
This, to our knowledge, has not been emphasized in the
existing literature, which treats the imputation function as a
completely arbitrary black box rather than taking a
semi-parametric approach that can provide insights on the
optimal imputation function for efficiency.
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Linear IV

The MAR-S framework is straightforward to extend to linear IV.
We follow the terminology and setup of Blandhol et al. (2022).
Consider dataset {Wi}n

i=1 with

Wi = (Yi ,Mi ,Ci ,Zi ,Ai ,Xi ,Ui),

where Zi ∈ Z ⊆ R is a candidate instrumental variable (IV),
Ci ∈ C ⊆ Rd are covariates (which contain a constant),
Mi ∈ M = {0,1} is a treatment of interest, Yi ∈ Y ⊆ R is an
outcome of interest, Ai ∈ {0,1} is the annotation indicator,
Xi ∈ X ⊆ Rk are observed covariates relevant to annotation,
and Ui ∈ U ⊆ Rℓ are unstructured data. We further assume
that Wi

iid∼ P for some joint distribution P, and that
[(Ci ,Zi) ⊥⊥ Ai ] | Xi .
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Liinear IV

Potential outcomes are denoted {Y m
i }m∈M and potential

treatments are denoted {Mz
i }z∈Z . Assuming consistency of

potential outcomes and treatment, we have

Yi =
∑

m∈M
I(Mi = m)Y m

i , Mi =
∑
z∈Z

I(Zi = z)Mz
i .

We are interested in identifying and estimating the average
treatment effect:

θ := E [Y m=1
i − Y m=0

i ].
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Linear IV

The efficient estimator for θ is:

θ̂ = θ̂numθ̂
−1
den =

∑
i∈I ŽiYi∑

i∈I Ži

[
µ̂(X̃i) +

Ai
π(Xi )

(Mi − µ̂(X̃i))
] ,

where Ži is Zi residualized with a least squares fit on Ci and
X̃i := (Xi ,Ui ,Zi ,Ci).

Note that the efficient estimator is just a TSLS regression with
pseudo-treatment φ̂i := µ̂(X̃i) +

Ai
π(Xi )

(Mi − µ̂(X̃i)), or

θ̂ = θ̂numθ̂
−1
den =

∑
i∈I ŽiYi∑
i∈I Ži φ̂i

.

Notice once again that the optimal imputation function is also a
function of Z and C.



Inference with
Unstructured Data

Carlson, Dell

Introduction

Literature

The MAR-S
Framework

Applications

Extensions

Empirical Examples

Conclusion

Differences-in-Differences
In this application, we focus on the nonparametrically founded
differences-in-differences (DiD) estimator introduced in
Callaway and Sant’Anna (2021).

Consider the dataset {Wi}n
i=1:

Wi = (Mi1, . . .MiT ,Di1, . . . ,DiT ,Ai1, . . . ,AiT ,Xi1, . . . ,XiT ,Ui1, . . . ,UiT ),

where Mit ∈ M× {0} ⊆ R is an outcome of interest, and
Dit ∈ D = {0,1} are treatment indicators.

Let Gig be a binary indicator for a unit i first being treated at
time g and let Ci be an indicator for units that are never treated.
Furthermore, we define Mg=0

it to be the untreated potential
outcome of a unit i at time t and Mg

it to be the potential outcome
of a unit i at time t if they first became treated in period g.
Assuming consistency of potential outcomes, we have

Mit = Mg=0
it +

T∑
g=2

(
Mg

it − Mg=0
it

)
Gig .
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Differences-in-Differences

We are interested in the estimand

θ = E
[
M∗

it
g − M∗

it
g=0 | Gig = 1

]
,

the average treatment effect on those treated in cohort g at
time t . For concreteness, but without loss of generality, we set
g = 2 and t = 2, the canonical two-period DiD setup.

We can express θ as E [M∗
i | Gi2 = 1]− E [M∗

i | Ci = 1] for
M∗

i := M∗
i2 − M∗

i1.

Let Mi := Mi2 − Mi1, Ai := Ai1Ai2, and X̃i := (Xi1,Xi2,Ui1,Ui2).
Under Assumptions 1 and 2, we can identify θ as

θ = θG − θC , θG = E [µG(X̃i) | Gi2 = 1], θC = E [µC(X̃i) | Ci = 1],

where µG(X̃i) = E [Mi | Gi2 = 1,Ai = 1, X̃i ] and
µC(X̃i) = E [Mi | Ci = 1,Ai = 1, X̃i ].
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Differences-in-Differences

We can form efficient one-step estimators for θG and θC as

θ̂G =
1
|I|
∑
i∈I

Gi2

P̂(Gi2 = 1)

[
µ̂G(X̃i) +

Ai

π(Xi)
(Mi − µ̂G(X̃i))

]
,

θ̂C =
1
|I|
∑
i∈I

Ci

P̂(Ci = 1)

[
µ̂C(X̃i) +

Ai

π(Xi)
(Mi − µ̂C(X̃i))

]
,

where P̂ is an empirical probability, and we can combine them
to form the efficient estimator for θ as

θ̂ = θ̂G − θ̂C .
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RDD Under Local Randomization

We focus on sharp RDD under the local randomization
framework (Cattaneo et al., 2024), as under the continuity
framework, the functionals are not pathwise differentiable.

Consider the dataset {Wi}n
i=1 with Wi = (Mi ,Ri ,Di ,Ai ,Xi ,Ui),

where Mi ∈ M× {0} ⊆ R is an outcome of interest,
Ri ∈ R ⊆ R is the running variable, Di ∈ D = {0,1} is a
treatment indicator, Ai ∈ {0,1} is the annotation indicator,
Xi ∈ X ⊆ Rk are observed covariates, and Ui ∈ U ⊆ Rℓ are
unstructured data. We assume Wi

iid∼ P for some joint
distribution P, and that [(Ri ,Di) ⊥⊥ Ai ] | Xi .



Inference with
Unstructured Data

Carlson, Dell

Introduction

Literature

The MAR-S
Framework

Applications

Extensions

Empirical Examples

Conclusion

RDD
Potential outcomes {Md

i }d∈D are related to observed
outcomes via the assumption of consistency:

Mi = DiMd=1
i + (1 − Di)Md=0

i .

We are interested in the estimand

θ = E
[
M∗

i
d=1 − M∗

i
d=0 | Ri ∈ B

]
for a set (or “window”) B ⊂ R. We can write θ as

θ = E [M∗
i | Ri ∈ B,Di = 1]− E [M∗

i | Ri ∈ B,Di = 0].

Let X̃i := (Xi ,Ui). Then, under Assumptions 1 and 2, we can
identify θ as θ = θ1 − θ0 where

θd = E [µd (X̃i) | Ri ∈ B,Di = d ],

with µd (X̃ ) = E [Mi | Ri ∈ B,Di = d ,Ai = 1, X̃i ].
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RDD

Forming efficient one-step estimators for θ1 and θ0,
respectively, as

θ̂1 =
1
|I|
∑
i∈I

I{Ri ∈ B,Di = 1}
P̂(Ri ∈ B,Di = 1)

[
µ̂1(X̃i) +

Ai

π(Xi)
(Mi − µ̂1(X̃i))

]
,

θ̂0 =
1
|I|
∑
i∈I

I{Ri ∈ B,Di = 0}
P̂(Ri ∈ B,Di = 0)

[
µ̂0(X̃i) +

Ai

π(Xi)
(Mi − µ̂0(X̃i))

]
,

where P̂ again indicates an empirical probability, we can
combine them to form an efficient estimator of θ as

θ̂ = θ̂1 − θ̂0,
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Issues that Arise in Large Datasets

In many economic applications using unstructured data,
imputed structured data are aggregated, often nonlinearly.
The existing literature assumes that ground truth data are
available at the same level of aggregation as the
parameter of interest.
However, collecting data at this level is typically infeasible,
because it would require labeling a very large number of
unstructured data instances.
For the framework to be practically useful in many cases,
we need it to address this challenge.



Inference with
Unstructured Data

Carlson, Dell

Introduction

Literature

The MAR-S
Framework

Applications

Extensions

Empirical Examples

Conclusion

Linear Models with MAR-S First-Step
Measurement Error

Consider the linear model

Y = X ∗β + ε,

In particular, we consider the case that X ∗
i is not actually

observed, but has been estimated with a MAR-S first-step, Xi .

Xk,i = X ∗
k,i + ηk,i , (εi ,X ∗

k,i) ⊥⊥ ηk,i , ηk,i
d
≈ N(0, σ2

η,k ),

σ2
η,k := |Ik |−1Var(φk )

where φk is the efficient influence function associated with Xk .

As such, we are in a classical measurement error setting.

This setup nests the case where only some regressors are
generated by a MAR-S first-step, in which case σ2

η,k = 0 for
non-MAR-S regressors.
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Measurement Error Structure

We therefore assume:

ηi ⊥⊥ Yi , ηi
iid∼ N(0,Σ)

where:
Σ := diag(σ2

η,1, . . . , σ
2
η,K )

Reasonable given:
Each MAR-S first-step regressor Xk is typically estimated
on a separate sample.
For large Ik , the normal approximation for ηk,i is accurate.

We consider Σ to be known, which is reasonable when Ik is
sufficiently large.
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GMM Moment Condition for β

Under the measurement error model, the coefficient vector β
satisfies the GMM moment condition:

E [g(Xi ,Yi , β)] = 0

where:
g(Xi ,Yi , β) = Xi(Yi − XT

i β) + Σβ

Interpretation:

First term: Moment condition from OLS
Second term: Correction for measurement error variance
Σ
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Plug-in GMM Estimator

The corresponding consistent GMM estimator is:

β̂ =

(
1
n

n∑
i=1

XiXT
i − Σ

)−1(
1
n

n∑
i=1

XiYi

)

Equivalently:
β̂ = (XTX − nΣ)−1XTY

Asymptotic Distribution: Under mild regularity conditions:

√
n(β̂ − β) −→

d
N(0,G−1ΞG−1)

where:

G = −
(
E [XiXT

i ]− Σ
)
, Ξ = Var(Xi(Yi − XT

i β))
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Linear Models with MAR-S First Step
Measurement Error

This setup can be straightforwardly extended to the case
of clustering.
It can also be readily specialized to the panel data case
(Deaton, 1985).
Moreover, there are various arms reach extensions of the
framework for cases where, e.g., there is heterogeneity in
variance for ηi across i , the outcome is a MAR-S first-step
as well (or alone), measurement error distributions are not
assumed to be normal, etc.
The MAR-S first-step is crucial for making this linear
measurement error model plausible.
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Choosing an Annotation Score Function

Choosing an appropriate annotation function is not always
trivial.
In large datasets, the structured data of interest may
represent a “rare event”.
Limiting to a subset of the content based on some rule
(e.g., the presence of certain keywords) violates the
missing at random assumption.
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Choosing the Annotation Score Function

Recall that the asymptotic variance of θ̂ is:

σ2 := Var
(
µ(X̃ ) +

A
π(X )

(M − µ(X̃ ))

)
which can be expressed as:

σ2 = E
[

A
π(X )2 (M − µ(X̃ ))2

]
+ c

where c collects all terms that do not depend on π(X )
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Optimal Annotation Score Function

To minimize the variance, we solve the following constrained
optimization:

min
π,λ,κ

{
E
[

A
π(X )2 (M − µ(X̃ ))2

]
+ λ(E [π(X )]− 1)− κE [π(X )]

}
where:

λ, κ: KKT multipliers
Constraints: 0 ≤ E [π(X )] ≤ 1
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Characterization of Optimal Score Function

Under Assumption 2, the optimal annotation score function is:

πIS(X ) ∝ E
[
(M∗ − µ(X̃ ))2 | X

]1/2

This places more weight on units that are harder to impute,
capturing the idea of uncertainty-driven sampling.

However, πIS is infeasible, as it depends on unobserved M∗
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Feasible Annotation Score Function

Following Zrnic and Candes (2024), we may implement a
feasible approximation:

πFIS(X ) ∝ err(X )

where:
err(X ) ≈ E

[
(M∗ − µ(X̃ ))2 | X

]1/2

Interpretation:
err(X ) is a proxy for imputation uncertainty
Can be estimated using:

Model-based variance estimates
Cross-validation residuals
Ensemble disagreement (if using ML models)
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Debiasing Baker, Bloom, and Davis (QJE
2016)

Baker, Bloom, and Davis (2016) construct an “economic
policy uncertainty” (EPU) index by computing the share of
articles in a handful of newspapers each month that also
satisfy a simple keyword query, and likewise perform an
audit study that collects ground truth on mentions of
economic policy uncertainty.
In the following figure, we present the original and MAR-S
debiased EPU indices. We also plot debiased and naive
versions of the EPU index, imputed with the long
document transformer longformer-base-4096.
For this figure, we utilize 25% of their audit sample ground
truth labels for debiasing, and use the rest of the audit
sample for imputation.
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Debiased EPU
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Firm-Level Regression

We reanalyze the following baseline regression from Table IV,
column (5):

∆Empit = β∆ logEPUt × intensityit

+ γ∆
Federal purchasest

GDPt
× intensityit + αi + ψt + uit

i : Firm index, t : Year index
αi , ψt : Firm and year fixed effects
intensityit : Firm-year policy exposure intensity
∆Empit : Employment growth
β: Coefficient of interest
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Results

Figure: Estimates of β by estimator for EPU and MAR-S-EPU indices.
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Debiasing Caldara and Iacoviello (AER 2022)

Caldara and Iacoviello (2022) construct a “geopolitical
risk” (GPR) index by computing the share of articles in a
handful of newspapers each month that satisfy a keyword
query.
An inference-minded interpretation of their index is: what
is the probability of an article being written on geopolitical
risk period by period?
Fortunately, Caldara and Iacoviello (2022) perform audit
studies that collect ground truth on mentions of
geopolitical risk.
We utilize all of the audit sample ground truth labels for
MAR-S, and unlabeled samples from Proquest for
imputation.
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Debiased GPR
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Empirical Illustration: GPR Regression

We revisit a representative regression analysis from Caldara
and Iacoviello, which estimates the impact of the GPR index on
economic disaster probability:

Dit = βGPRt + δ∆GDPit−1 + uit

In Figure 6.2, we compare the following estimation strategies
for β:

ME-LS: Measurement-error corrected least squares
estimator using MAR-S-GPR index
Naive OLS:

With MAR-S-GPR index
With unadjusted GPR index
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Figure: Estimates of β by estimator for GPR and MAR-S-GPR indices.
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Design Choices in MAR-S

In order to probe design choices associated with the
MAR-S framework, we develop an example in which we
examine the share of articles that are about politics in local
U.S. newspapers across time.
Articles were selected at random for annotation from a
large sample of historical U.S. newspapers (Dell et al.,
2023).
No keyword filters were implemented beforehand, so the
relevant population is all front page content in thousands
of local newspapers.
In the economics literature, annotated text audit samples
are typically very small, whereas by labeling our own data,
we could create a large enough set to examine how the
size of the annotation set influences inference under
MAR-S.
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Varying the Size of Annotated Data

Figure: Estimating P(discussion of politics) with annotation score
π ∈

{ 1
20 ,

1
10 ,

1
5 ,

1
2 , 1

}
.



Inference with
Unstructured Data

Carlson, Dell

Introduction

Literature

The MAR-S
Framework

Applications

Extensions

Empirical Examples

Conclusion

Varying Imputation Accuracy

Figure: Estimating P(discussion of politics) across fine-tuned and
zero-shot classifiers.
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Conclusion

Deep learning provides powerful tools for processing
unstructured economic data.
By combining a new literature on debiased inference with
black box AI and an older literature on semiparametric
inference for missing data, we recover efficient inference
for unstructured data.
We apply our framework to a variety of common
estimators and settings in empirical economics.
Accounting for imputation bias in inference with
unstructured data can fundamentally influence both point
estimates and uncertainty quantification.
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